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Abstract: The secondary structures of CdSZn2MT-I1 and ZnTMT-I1 from rabbit 

liver and their derivative Pt7MT-I1 in solid state were investigated by Fourier 

transform u spectroscopy. The CdsZn2MT-II contains about 30% turns and half 

turns, 17% 31o-helix, 4% unordered and 9% P-extended chain, which is similar to 

the content determined by the nmr analysis and is similar to the structures of the 

Pt7MT-II and Zn7MT-11. The results indicate that there is no evident conformation 

changes of MTs' secondary structure when the tetrahedral Zn and Cd ions of 

native MTs are replaced by square-planar Pt ion. 

INTRODUCTION 
Metallotioneins ( MTs) are small, structurally unique, and hnctionally 

enigmatic protein which exist ubiquitously in nature'. Their rich cysteine residues 
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involved in the binding of a large variety of divalent and trivalent metals It1 vrfro 

and in vivo. It has been established that they have putative roles in cadmium 

detoxification, essential metal metabolism, radical scavenging, the stress response, 

and the pharmacology of metallodrugs and alkylating 

Platinum(I1) complexes including cisplatin and carboplatin are widely used 

in treating a number of human cancer2. Many studies have demonstrated that the 

reactions of Pt(I1) ions with native MTs in vivo and it1 vitro can produce 

platinum-metal-rnetallothi~neins~~~. However, the geometry of coordinated 

platinum usually is square planar; while the case of the Cd and Zn are both 

tetrahedral. It is still unclear whether there is conformation change of MTs when 

the tetrahedral Zn and Cd ions of native MTs are replaced by square-planar Pt ion. 

In order to elucidate the influence of metal ions with different geometry on the 

conformation of bond MTs, we investigated the secondary structures of MTs by 

using FTIR spectroscopy. 

EXPERIMENTAL 

Materials 

Rabbit liver Cd5Zn2MT-II and Zn7MT-II were isolated and purified from 

adult male rabbit injected with CdC12 and Zn(NO,), solution, re~pectively**~. The 

PtTMT-II were prepared as described in the literature". The purity of the 

metallothionein was checked by HPLC. Contents of S and metal ions were 

determined by inductively coupled argon plasma-atomic emission (ICP) 

spectrometric method" performed on a JOBIN YVON JY38S ICP spectrometer. 

During the experiments, all chemicals used were reagent grade or better, and de- 

ionized water was used. 

Infrared Snectrosconv and Data Maninidation 

Infrared spectra were measured with a Nicolet 170SX FTIR 
spectrophotometer at room temperature. The instrument was purged with dry air 

overnight prior to measurements. The solid MTs were measured as KBr pollets. 
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For each spectrum, a 1200-scan interferogram was collected at single beam mode 

with a 2 cm-' resolution from 4000 to 1000 cm *'. Difference spectra were 

generated by subtraction of the gaseous water following the procedure of Dong et 

all2. Second-derivative spectra were obtained by taking the first derivative twice 

and were used to verify the peak assignments of the deconvolved spectra. Fourier 

self-deconvolution of the amide I absorbance bands was performed by using a 

lorentzian of 23 cm-' half-bandwidth and a resolution enhancement factor ( k value 

of 2.7 ), which generally give optimal resolution enhancement without producing 

evidence of excessive deconvolution, such as side lobe or other artifacts. The 

accurate absorption position and strength of each absorbance in amide I region 

was obtained by iterative curve fitting to the deconvolved spectra. The relative 

amounts of different secondary structure were assigned to the protein by 

integrating the areas under the curves assigned to a particular peptide chain 

configuration. 

RESULTS AND DISCUSSION 
The original ir spectra of CdsZnlMT, Zn7MT and Pt7MT in amide I region 

are showed in Figure 1. Little secondary structural information can be obtained 

directly from the original ir spectra showed in Figure 1. In order to get more 

information, we can take their secondary derivative spectra, from which the 

accurate number of components is obvious. Figure 2 shows the deconvluted 

spectra and the fitted derivative spectra and their secondary derivative spectra. 

From Figure 2, it can be seen that the number and wavenumber of the peaks in the 

second-derivative spectra are consistent with the corresponding value in the 

deconvolved spectra, which indicate that our results are reliable. Curve fitting of 

the deconvolved spectra by multiple Gaussian profiles gives the individual 

component bands. For all three samples, nine components between about 1700 

and 1620 crn-lare considered to be due to the vibrations of the peptide bond. The 

two bands below 1620 cm-' are probably from the side-chain vibrations of amino 
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FIGURE 1 Original ir spectra (amide I region ) of CdsZn2MT-II , Zn,MT-II , 
PtJvlT-I1 in solid state at room temperature 

acides13. Assignment of amide I absorbance components gives the information of 

the secondary structures. The results are summarized in Table 1 

The amide I band frequency assignments for secondary structures available 

from previous studies are as f o I l o w ~ ~ ~ - ~ ' :  a-helix ( 1650 f 2  cm-' ), P-strand (1635 

and 1620 cm-I), unordered ( 1640 f2 cm-') and turns ( 1685 and 1665 cm-I). The 

wavenumber of each type of above substructure is lower by approximately 5 cm" 

than the corresponding value in HzO solution because each of the component 

bands of the amide I bands is shifted to lower frequencies in DzO and solid state. 

According to these assignments, we can assign 1623 and 1631 cm-l to the 8- 
extended chain unambiguously. 

At present there are no generally valid criteria for a reliable discrimination of 

the various bands between 1670 and 1695 cm-LLB. Balyer et. al." assigned this 

region to turns, but Dong et. aL2' assigned 1694 cm-' in H20 solution to p- 
extended chain. From our data, we can obtain four peaks 1699, 1690, 1678 cm-l 
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Figure 2 Deconvolved spectra and fitted amide I components for CdSZnzMT-I1 , 
Zn7MT-II, Pt7w-11 and their second derivative spectra . In the upper curves , solid 
lines represent the experimental deconvolved spectrum ; the dotted lines give the 
resolved components and the dash lines show the calculated sum -of the resolved 
components (because the deviation between the calculated curve and the experimental 
data is so small , the former is virtually superimposed on the experimental spectrum). 
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Frequency ( cm-' ) 

1699,1690,1678 

1666 

1657,1648,1639 

1629,1620 

1698,1690,1679 

1667 

1657,1648,1639 

1630,1621 

Table 1 

Assignment 

p-turns and half turns 

3 lo-helix 

Unordered 

P-extended chain 

p-turns and half turns 

3 'o-helix 

Unordered 

P-extended chain 

HUANG ET AL. 

1699,1690,1679 

1667 

1658,1649,1639 

1630,1621 

Cd5Zn2MT-II 

Zn7MT-I1 

p-turns and half turns 

3 'o-helix 

Unordered 

P-extended chain 

Pt7MT-11 r 
content ( 'Yn ) 

30 % 

17 % 

44 Yo 

9 Yo 

28% 

18 Yo 

44% 

10 % 

28% 

17 Yo 

46 'Yo 

9 %  

in this region and we assign them to 0-turns and half turn. Because if we assign 

1699 and 1690 cm-' to P-extended chain, the percentage of P-extended chain 

become too high ( about 22 % ). This is impracticable since the content of p- 
extended chain differ from the value estimated from the nmr analysis2'* which 

shows that there are little P-extended chain. In human Cd7MT-I1 solution, which 

secondary structure is very similar to the solid rabbit CdsZnzMT-II", there are six 

half turns (Pro3-Cys5, Cys5-Cys7, Thrl4-ala16, Ser32-Cys34, Cys34-Cys36 and 

Cys48-Cys50 ) and one turn (Va139-cys41), the total content of these turns are 

about 3 1  %. Because it is hard to identify the turns structure and half turns 

structure in FTIR, so we assign 1699, 1690, 1678 cm-' bands to turns and half 
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turns and the content of this structure (30 %) is similar to the content in nmr 

analysisz1. 

As we known, there are two 3lo-helixs in the structure of CdJZn2MT-11, 

which are located at residues 42-47 and 58-61. respectively2'. Because 3lO-helixs 

are less common, they have been less well characterized by infrared 

spectroscopy22. However, synthetic a-aminobutyric acid-containing peptides, 

which are known to form 3lo-helixs, show strong amide I bands at 1662-1663 

cm-'. Other experimental and theoretical studies also indicate that distorted helical 

structures such as 310-helixs exhibit amide I frequencies which are higher than that 

observed for a-helices due to weaker hydrogen bonding2'. Therefore, we can 

reasonably assign the 1666 cm-' band to 310-helixs structure, and the content of 

310-helixs structure (17%) is similar to the structure of MT determined by nmr 

analysis. 

In the most cases of reported proteins, the peak around 1657 cm-' is 

empirically assigned to the a-helix. However, in the case of cd~Zn~MT-11, since 

the content of the a-helix is very low, we cannot assign the 1657 cm-' band to the 

a-helix as discussed previou~elyl~. Dong et aL2' assigned 1659 cm" band to the 

unordered structure. Hence, the 1657 cm'' band is considered to be due to the 

unordered structure mainly. As to 1648 cm-' band and 1639 cm-' band, we 

assigned them to the unordered structure. 

In this way, the assignments of amide I bands of Zn7MT-I1 and Pt7MT-I1 

were obtained. 

Curve fit to the original spectra was also carried out as reported for the 

acetylcholine receptor by Methot et al.24, and similar results were obtained with 

those of curve fitting to the deconvolved spectra as described above. A typical 

example of the curve-fitted original spectrum of Pt7MT-I1 is shown in Figure 3. 

The content of 0-turns and half turns, 3 ,o-helix, P-extended chain and unordered 
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FIGURE 3 The curve-fitted original spectrum of Pt7MT-lI in amide 1 region 

structures estimated from the curve-fitted original spectrum are 28%, 17%, 9% 

and 46%, respectively, which are the same as those from the deconvolved 

spectrum (Figure 2). The number and position of peaks are almost the same as 

those in the deconvolved spectrum. These results indicate that the estimated 

secondary structures are reliable. 

From Table 1, we obtained that the contents of the structures of the MTs 

binding with different metal ions are very similar. The results indicate that there is 

no evident conformation changes of MTs’ secondary structure when the 

tetrahedral Zn and Cd ions of native MTs are replaced by square-planar Pt ion. 
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